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2 ABBREVIATIONS 

Short Name Meaning 

RLM Real-Load-Metering 

WRLM Without Real Load-Metering 

CHP Co-generation units 

W Watt 

PV Photovoltaic 

H2 Hydrogen 

ESPS Emergency Standby Power Systems 

DC Direct Current 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

NMAE Normalised Mean Absolute Error 

API Application Programming Interface 

 

3 EXECUTIVE SUMMARY 

Task 4.2 of ISLANDER was dedicated to develop individual renewable supply generation 
forecast models. The present work was focused on photovoltaic and wind turbine power 
generation forecasting. The objective was to develop a 2-days ahead forecast (lead time from 
+0 to +48hours) with an hourly granularity for the PV and wind turbine production, with the 
further aim of computing the global production of the island of Borkum.  

In a first main step of the study, historical data was collected from 3 main sources: (i) a wind 
farm; (ii) a large PV park (iii) 2 small PV parks.  

More than 4 years of historical data (from January 2017 to January 2021) was collected from 
Borkum’s utility company. The pre-treatment and analysis of this input data was very time 
consuming as data quality was poor (inconsistency, missing data, false data). Many filtering or 
altering processes had to be applied to the collected data. At this point a first study consisted 
in analysing the in-situ measurements measured on the Borkum island, and improving data 
quality to be able to test models on the data was carry out. 

In order to deliver forecasts of renewable production, this study proposed a physical approach 
using asset characteristics and weather forecast as inputs. In the final test, these models were 
tested on data from 2017 to 2020.  

The forecasts are used as inputs of the global production forecast model, and will be used in 
the future to predict individual PV production of  households and businesses.  
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4 INTRODUCTION 

This deliverable aims to explain the development of wind turbine and photovoltaic park 
production forecasting models, i.e. the intermittent renewable electricity sources located in 
Borkum. 
Forecasting individual renewable energy power production becomes crucial in the context of 
smart grid technologies at a household or business level. By accurately predicting the amount 
of renewable energy that will be generated, the energy consummed and stored by households 
and businesses can be effectively managed. With precise forecasts, a smart IT platform can 
optimize the utilization of self-generated power, ensuring efficient use and minimizing 
reliance on the grid. This enables greater control over energy costs and promotes 
sustainability by maximizing the use of clean energy sources. Accurate forecasts also facilitate 
effective battery storage management, allowing excess energy to be stored for later use 
during periods of low generation or high demand. Furthermore, forecasting empowers users 
to make informed decisions about energy usage, enabling them to align their activities with 
periods of abundant renewable energy supply. Ultimately, forecasting individual renewable 
energy power production promotes energy self-sufficiency, cost savings, and environmental 
sustainability at the household or business level [1].  

This deliverable will begin by providing an overview of the context and objectives. 
Subsequently, the methods employed will be described, followed by a presentation of the 
forecast results and subsequent discussions. Data forecasts will be sent daily to the smart IT 
platform through communication protocols developed in the context of the WP4. The section 
about industrialisation and communication protocols is detailed in deliverable 4.5 [2], as 
identical procedures have been applied to make the PV and wind production forecasting 
algorithms operational. 

5 CONTEXT AND OBJECTIVES 

5.1 Objective of the task and deliverable 

As detailed in the Grant agreement of the project, Task 4.2 aims at developing a “module [that] 
will deliver estimations about the production of the renewable assets within the grid”. The 
module combines fundamental physics data and manufacturer information to accurately 
depict the product of renewable energy units. By integrating these sources, the module can 
effectively derive power production based on weather forecasts. 

5.2 Value of the task in the rest of the project  

The short (a few hours) to medium-term (a few days) forecast of power production from 
individual renewable assets (PV and wind farms) is required as an input for the energy 
management system (the smart IT platform) in order to optimize energy flows and storage on 
the island. The underlying objective of task 4.2 is to maximise the accuracy of the power 
production forecasts: the better the forecast performances the better the energy 
management decisions. Notice that the optimization will, in the long-term, be made more 
efficient by an increased forecast accuracy as well as a higher forecast update frequency (the 
latter being limited by the availability of new weather forecast as well as near “real-time” 
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production measurement feedback). 

5.3 Problem statement 

The specific objective of the task is to provide a software module that forecasts power 
production from each renewable production unit on the island that is monitored in the smart 
IT platform, i.e. the following assets: 

- The 2 wind turbines production farm (3.6 MW total capacity); 

- The large (1.4 MWp) PV field and 2 small PV fields (40 kWp and 80 kWp) 

- The individual households (30 units planned) and buildings (3 planned) PV production 
units (notice that, since these assets are not operational at the time this deliverable is 
written, no forecast has been made available nor tested for these systems). 

In agreement with the requirements expressed by WP3 (Smart IT platform development), the 
power production forecasts will be delivered with the following specifications for each 
renewable asset:  

- Hourly forecast of the average power production; 

- A forecast horizon of 2 days (from +1 to +48 hours, i.e. 49 data points) for short term 
optimization and potentially valuing energy on the market ; 

- The forecast will be made available each day at 9am. 

5.4 Background 

During the previous NETfficient project held in Borkum, the consortium worked on global 
consumption and production forecasts. This project ended in 2018. BCM contacted the 
partner in charge of the models and discussed the issues encountered and the strategies 
chosen. However, it was not possible to have access to the NETfficient data nor to the model 
created. Therefore, BCM built global consumption and production models from scratch.  

5.5 State of the art 

5.5.1 Photovoltaic power forecasting 

 

To introduce the problem of forecasting power plant production, the needs of this prediction 

must be assessed first. In their article, Brancucci Martinez-Anido et al. [3] conclude that having 

a reliable power prediction system significantly reduces the energy production cost in a multi-

technology ecosystem by optimising the start and shutdown of other energy sources as a 

function of the solar energy forecast. 

Antonanzas et al. [3] gives an overview of the state-of-the-art knowledge about solar power 

forecasting, studying various time horizons (from a few seconds to days or weeks ahead) and 

spatial horizons (from a single site to regional forecasts). It also includes the usual metrics used 

for evaluating time series models. It is valuable information to decide on the best solution for 

Borkum. It confirms the value and relevance of a physical model and how other types of 

models could complement it.  

Dolara et al. [5] and De Soto et al. [6] offer in-depth analyses of physical models and present 

how a solar panel can be modelled with a finite set of parameters, computed for each panel 

model at reference conditions and enable the forecast of power generation in any operating 

conditions.  
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Interestingly, a recent paper [7] has demonstrated that while properly trained machine 

learning algorithms outperform first principles in terms of power production forecasts for 

individual assets or portfolios with up to 100 systems. However, when evaluating the same 

models in terms of financial performances on the day-ahead electricity market (the study 

focuses on The Netherlands) the physical model outperforms all machine learning approaches. 

 

5.5.2 Wind power forecasting 

 

Wind turbine forecasts have been widely studied from the early beginning. Output power 
modelling has been a major focus because of the central role of this information within the 
development and operational lifetime of wind power plants. This particular part of the study 
can be split into two different domains: 

• Production scenarios reconstitution (historical or not) industrially implemented to 
compute power plant performances without having any realised signal. This part does 
not integrate the scope of the proposed study.   

• Production forecasts over a determined time horizon (from 30 minutes to months). 
This point is the main interest of this work package for which day-ahead forecasts are 
required for Borkum wind turbine plants. 

Different models can be implemented with varying degrees of complexity to provide reliable 
forecast signals for Borkum’s wind turbines. Literature proposes interesting papers with 
complete descriptions of the most widely used implementations [8], [9]. 

A power-curve-based implementation is proposed for this work package as a first 
development step, as described in [10]. This choice is motivated by: 

• The relatively low modelling error level that can be reached. 

• The integrated physical modelling that allows the integration of machine parameters 
such as power curves and global performance ratio directly. 

• The integration of the weather forecast work package provided in this project (task 
4.3) aims to enhance the weather prediction and the input of this model. 

 

5.6 Hypothesis – assumptions 

The physical laws govern the response of the installations to the prevailing weather 
conditions. In simpler terms, they determine the amount of electricity generated as a function 
of the input features. By coding those physical laws and machine characteristics, the model 
can be implemented. 

As first approximations we hypothesize that the power production depends on a limited 
number of weather variables depending on the technology: 

- Photovoltaic electricity production: PV power depends principally on solar irradiance 
on the system (with air temperature and wind cooling effects as “corrective” variables 
to account for module temperature efficiency dependence [11]. 

- Wind electricity production: Wind power depends on the kinetic energy of the air 
incident on the turbine blades: the produced power depends mainly on wind speed as 
well as air pressure and temperature (that modulate air density) [12]. 

 

With the assumption that the physical laws can be correctly transcribed into code, the model 

is independent of any learned parameter, unlike machine learning models. 
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6 METHODS 

6.1 Data analysis 

This section aims to analyse the raw data sent by the Borkum utilities and explain the work 
carried out to clean this data. 

6.1.1 PV power production data 

Three photovoltaic (PV) plants produce energy on the island. Their production has been 
metered in real-time on a fifteen-minute time step, from 2017/01/01 for the main park and 
from 2018/01/01 for the two smaller parks and plotted in Figure 1 and Figure 2. Solar 
production follows a yearly bell shape with higher production in summer, up to 40 kW, 80 kW 
and 1300 kW, respectively. Scale errors in raw data in 2019 for the smaller parks and 2020 for 
the main park were detected due to a pre-processing issue when converting data from a one-
hour granularity to a fifteen-minute one. Therefore, the related power neededs to be 
multiplied by a correction coefficient of four. Also, data were missing in the production of 
photovoltaic systems 0095 and 0054 towards the end of 2019. Whether this is just a case of 
missing data, the result of breakdowns or a voluntary cut-off for maintenance is unknown. In 
order to predict further missing values, it would be crucial to collect a calendar of the 
performed and planned maintenance and set up a warning system. 

 

 

Figure 1: Production load curve of the main photovoltaic park, before data cleaning 

 

 

Figure 2: Production curves of the two smaller photovoltaic parks before data cleaning 
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Finally, a discontinuity of the production of the photovoltaic plant 0054 was noticed: 
production fell from 70 to 60 kW during the summer of 2020. This drop is unexplained. 

 

6.1.2 Wind turbines production data 

The two wind turbines of Borkum – wind turbines 2513 and 2510 as numbered in Figure 3 - 
are producing up to 1755 kW. During periods of 2019 and in 2020, the production seems to 
be curtailed under 1500 kW, with different behaviors for each turbine. It is unknown if there 
is a physical explanation for these lower values or if they are due to data pre-processing 
artefacts. Besides, the load curve of the wind turbine 2510 has missing data from 2018/01/01 
to 2018/01/06. 

 

Figure 3: Production curves of the wind turbine energy production from 2017 to 2020. 

 

6.2 Forecast module development 

6.2.1 Wind turbine model 

Introduction to wind turbines 

The first version of the forecast model provided in this task is based on the physical modelling 
of wind turbines. Since the early beginning of wind turbine development, numerous models 
have been proposed helping scientists to reach a valuable degree of fidelity from a 
comprehensive simulation framework.  

 

The flowchart of the wind power forecast is illustrated within the Input/Output figure 
presented in Figure 4. As one can see, four main components are depicted:  

• The core numerical simulator introduced as the ‘Wind Power Forecast Model’ aims to 
transform weather forecasts into power forecasts. 

• The simulation parameters, regrouping the variables and specific fields used to adapt 
the model to the asset of interest. 

• The weather forecast database can be composed of several sources depending on the 
simulation goals. 
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• The production Forecast Database to store simulation results.   

 

 

Figure 4: Flowchart of the wind power forecast 

The following proposes specific explanations to ease pipeline and model comprehension. An 
illustration of the performances of this pipeline is then proposed based on real condition 
simulations adapted from Borkum wind turbine installations. 

 

Wind power forecast model 

To ease comprehension, the first component of the physical pipeline to be described is the 
core forecast model. Wind turbines can be assumed to be mechanical transformers that 
convert wind power into electrical power. As a result, their behaviour can be described as 
transfer functions mapping wind speed to electrical power. These latter are usually called 
«power curves» and globally represent the deterministic behaviour of the mechanical 
assembly. As an illustration, Figure 5 depicts the power curve of the Enercon wind turbine 
model. 

 

Figure 5: Power curve of the Enercon E66 

 

Three domains are distinguishable:  

• The low wind speed zone from 0 to 𝑈𝑖𝑛 for which the turbine does not output any power. 

• The operational domain for wind speeds between 𝑈𝑖𝑛 and 𝑈𝑜𝑢𝑡 corresponding to 

production to the grid.   
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• The high-speed domain for wind speeds upper than 𝑈𝑜𝑢𝑡 where the turbines stall for safety 

reasons. 

 

The physical model is implemented based on these physical considerations. First, the 

temperature, wind speed and pressure are extracted from the weather forecast database. A 

pre-processing stage is integrated into the power forecast model to adapt these parameters 

to the model requirements. This step stands on physical modelling to provide an adapted wind 

speed at hub height. This wind speed becomes then the input of the power-curve projection, 

and a power forecast is deduced.  

Additionally, to be as close as possible to the machine behaviour, this step only proceeds for 

wind speeds between 𝑈𝑖𝑛 and 𝑈𝑜𝑢𝑡. 

 

Figure 6: Flowchart of the wind turbine power forecast in an operational configuration 

 

Weather forecasts as input sources of the pipeline 

The physical modelling of wind turbines is based on weather solicitations of various types. In 
the proposed model, several weather parameters are taken into account:   

• The temperature. 

• The pressure. 

• The wind speed. 

 

To provide an accurate input for the physical model, these environmental parameters are 
extracted from weather forecast models (see Fischer et al. [13] on this topic). Depending on 
the data source, these parameters must be adapted to reach model requirements. 

 

6.2.2 PV model 

Introduction to photovoltaic system 

A photovoltaic system consists of numerous solar cells mounted together in a system, as 
described in Figure 7. A group of solar cells creates a solar module, and several solar modules 
are solar panels. A PV system is a framework of solar panels together with additional 
components. This renewable production system is used to transform solar energy into 
electricity. 
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Figure 7: Photovoltaic system 

To model and predict the power production of a photovoltaic system, two types of inputs are 
needed:  

• The characteristics of the installation 

o Coordinates data   

o Array angles of the panels and tracking data     

o Soiling data 

o Losses data    

• The weather previsions 

o Irradiance (Watts per square meter W/m²)  

o Time of day  

o Temperature   

o Wind speed (as meters per second, m/s) 

 

Physical model 

The process of predicting the power production can be divided into two main parts:  

1. The irradiance computation: compute the exact irradiance received by the panels 
depending on the time of day, location, array angles, tracking of the panel, and 
weather predictions. 

2. The power computation: compute the power created from this irradiance from the 
physical characteristics of the panels.   
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Figure 8: Irradiance computation 

The irradiance computation:  

1. The first module computes the localisation of the system in the world and what will be 
the incidence of the Sun's radiation at this location. It depends on the day of the year, 
the time of the day (and thus the location of the Sun compared to the Earth at this time 
of year). This module uses several types of coordinates and computes angular relations 
to output the sun angles at the location and time of prediction. 

2. The second module is in charge of predicting the horizontal beam irradiance and 
diffuse horizontal irradiance received from those Sun's angles at this location. It takes 
into account the air mass and atmospheric transmittance and uses several 
mathematical models to determine the irradiances.  

3. The next module applies those irradiances to the panels, introducing the angles and 
tilt of each panel with the ground. It computes the angles of incidence and the diffused 
and reflected irradiance.  

4. Next, the soiling module considers the self-soiling of the panels and how it affects the 
irradiance received by each module. 

5. Finally, the effective irradiance module sums everything above to output the watt per 
square meter received by each panel. 

 

The power computation: 

1. After that, the model has to transform the watt per square meters of solar power data 
to watts of electrical power taking into account the losses of the array. The power 
computation starts by computing the energy for each power cell which depends upon 
the installation model. It then multiplies this by the number of cells per panel to get 
the power at the output of each PV panel.  

2. The next module computes the net DC power for each array, being the sum of the 
power of its panels. This is the gross power as it computes and applies the DC losses, 
which are, to the only name a few: the wiring losses, the nameplates losses, etc.  

3. Finally, everything is put together to get the power prevision of the installation. 
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6.3 Performance metrics 

Error metrics used in the following parts of this document have been defined in detail in 
deliverable 4.5 of the project [2], only the formulas will be reminded here for the convenience 
of the reader. 

Let 𝑦1,  𝑦2,   … ,  𝑦𝑛 be the observations of the target at time steps 𝑡1,   … ,  𝑡𝑛 and 
𝑦ℎ𝑎𝑡1

,  𝑦ℎ𝑎𝑡2
,   … ,  𝑦ℎ𝑎𝑡𝑛

 the forecasts made for the same period. For 𝑖 in {1,   … ,  𝑛} the prediction 

error is computed by the formula 𝜀𝑖 =  𝑦ℎ𝑎𝑡𝑖
−  𝑦𝑖. 

- Bias : 𝐵𝐼𝐴𝑆 =
1

𝑛
∑ 𝜀𝑖

𝑛
𝑖=1  

- Mean absolute error: 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝜀𝑖|𝑛

𝑖=1  

- Mean absolute percentage error: 𝑀𝐴𝑃𝐸 = √
1

𝑛
∑ |

𝜀𝑖

𝑦𝑖
|𝑛

𝑖=1     

- Normalized mean absolute error: 𝑛𝑀𝐴𝐸 =
𝑀𝐴𝐸

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1

 

 

7 RESULTS & DISCUSSIONS 

7.1 Wind turbine model 

A performance analysis has been proposed to evaluate the reliability of the proposed forecast 
model. The parameters of this study are displayed in Table 1. 

 

Begin date 2021-01-01 

End date 2021-12-31 

Power turbine Enercon E66/1800 

Number of turbines 2 

Turbine efficiency 95% 

Weather forecast model 00:00 UTC ARPEGE RUN 

Table 1: Information on the back-testing conducted for the wind turbine production 

The forecast analysis is proposed to cover the two days ahead production period based on the 
D-1 ARPEGE run of 00:00 UTC. The study showed that the physical model based on the power-
curve implementation is reliable. Table 2 sums up the analysis results from metrics, and Figure 
9 proposes an illustrative comparison between the forecast and the realised production over 
January 2021. 

 

Bias 323.28 kW 

MAE 616.89 kW 
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NMAE 51 % 

Data coverage  98% 

Table 2: Results obtained with the physical model on the MAE (Mean Absolute Error) and NMAE 
(Normalized Mean Absolute Error) for the wind turbine park 

 

Figure 9: Power produced during an hour by the wind turbine expressed in kW– the blue plot is the realised 
production, whereas the orange plot is the prediction. The forecast has been evaluated for the wind turbine 

park composed of the 2 turbines.  

The power-curve modelling used in this study to forecast Day Ahead production shows an 
industrially admittable error with a mean bias of 323 kW (power produced during an hour) and 
an MAE of 616 kW. The nMAE remains high with a value of 51%, mainly explicable by the lack 
of information concerning the production state of the turbines. 

 

 

Figure 10: Overall bias of the wind power forecasted versus the realised data during 2021 
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The results are analysed by looking at the bias over time at different scales. The 2021 bias is 

presented in Figure 10.  However, studying the mean bias over the hour of day and month of 

the year did not lead to valuable conclusions. Indeed, the bias is higher in correlation with the 

production volumes during the nights and winters. To have an overview of the impacts of the 

hour of the day and season, the heatmaps of the bias and nMAE are compared as a function 

of the hour and month presented in Figure 11 and Figure 12.  

 

 

Figure 11: Heatmaps of the bias as a function of the hour and the month (expressed in kW) 

 

Figure 12: Heatmaps of the nMAE as a function of the hour and the month 

What can be concluded is that the nMAE seems to be weighed down in June, which represents 
only 4% of the year’s production.  As stated above, the highest bias is during the winter nights, 
even though the nMAE is quite low at those times.  

 

To enhance these models, precise information on the state of production could be added, such 
as maintenance, regulations due to weather conditions, or fault modes. To do so, the metric 
was calculated only when the power of the two turbines did not differ by more than 10%.  
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Figure 13: Graph of the production of wind turbine 1 versus wind turbine 2. The blue points represent the 
raw data, whereas the orange only the data on which the power produced by the 2 turbines does not differ 

more than 10%.  

Cleaning the data allows to improve the nMAE by 10%, showing the importance of having “on 
the spot” data. 

 

Bias 258 kW 

MAE 655 kW 

NMAE 40 % 

Table 3: Results obtained with the physical model on the MAE (Mean Absolute Error) and NMAE 
(Normalised Mean Absolute Error) for the wind turbine park using cleaned data 

Finally, this physical model can be improved by implementing statistical approaches, which 
have shown relevant enhancement over traditional approaches, as illustrated by Barbosa de 
Alencar et al. [8]. 

 

7.2 Solar powerplant model 

The performance of the photovoltaic forecast is evaluated with the same metrics as above. 
The parameters used in the analysis and the results are presented in Table 4.  

 

Begin date 2021-01-01 

End date 2021-12-31 

Photovoltaic installation Borkum 1400 kW 

Weather forecast model 00:00 UTC ARPEGE RUN 
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Data coverage 92 % 

Bias 1.36 kW 

MAE 60.0 kW 

NMAE 34 % 

Table 4: Results obtained with the physical model on the MAE (Mean Absolute Error) and NMAE 
(Normalised Mean Absolute Error) for the PV park 

First, looking at the bias and MAE, it can be concluded that, regarding the overall Borkum 
balance, the photovoltaic production forecast would not induce a significant error compared 
to the total island energy.  As the bias is small compared to the MAE, it can be concluded that 
the model error is centred - the chance of predicting higher or smaller energy is quite 
equivalent.  

 

The MAE of 34% is acceptable considering the condition of this study. A lot of information was 
indeed missing, and data had to be interpolated when possible. To give some examples of 
possible reasons explaining the nMAE :  

- As the exact characteristics of the parks were unknown, it was not possible to properly 
tune the hyperparameters (shading, etc.). 

- The maintenance and stops of the park are unknown and thus not taken into account.  

- The park losses efficiency over time.  

- The island has specific weather due to its conditions which are hard to analyse.  

In Figure 19, the behaviour of the nMAE over time is further highlighted.  

Below are plotted side-by-side the forecasted and realised load curves. Because of the scale, 

Figure 14 cannot be directly analysed, but it gives an overview of the production over one year.   

 

 

Figure 14: Realised and forecasted load curve over 2021 for the photovoltaic installation 

 

The following Figure 15 shows the bias over 2021. As stated above, it confirms that the bias is 
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centred and typical of a photovoltaic forecast model.  

 

 

Figure 15: Bias (realised - forecast) of the photovoltaic model over 2021 expressed in kW 

 

To further analyse and understand the behaviour of the model, several plots were outputted 

to examine the performance (particularly the bias) according to the hour of the day (Figure 16) 

and on the month of year (Figure 17).  

 

 

Figure 16: Mean hourly bias (realised - forecast) of the photovoltaic model 



 

 

  This project has received funding from the 
European Union’s Horizon 2020 research 
and innovation under grant agreement 
No. 957669  

 
Page | 20 

 

Deliverable 4.2: INDIVIDUAL RENEWABLE SUPPLY 
GENERATION FORECAST MODELS 

Version 3.0 

© ISLANDER consortium | public document 

 

Figure 17: Mean monthly bias (realised - forecast) of the photovoltaic model 

 

Figure 16 is interesting as it highlights a distinct behaviour: the bias is negative on mornings 

and positive on afternoons, the transition occurring around noon. Figure 17 was more 

predictable as it shows a higher bias in the middle of the year – during the summer when the 

irradiance is significant – and a negative bias over the fall and winter when the irradiance is 

lower, and the sky tends to be cloudy.   

With these plots, it is possible to conclude that the model tends to overpredict when the 

irradiance is high (for example during afternoons, or summer) and underpredict when the 

weather is more uncertain (during mornings or winters for example).  

Most importantly, these graphs need to be compared with the bias of the weather models 
presented in deliverable 4.3 of the WP4 of the ISLANDER project [13].  It can be noted that the 
error of the irradiance forecast has the same shape for both variables. As the photovoltaic 
model depends mostly on the irradiance forecast, it is significantly subordinated to it and the 
error of the irradiance will lead to a bias in the photovoltaic model. 

 

Finally, an explanation for the nMAE considering the bias and time is given to point out the 
hours that badly weight in the final result. The heatmaps of the bias and nMAE are showed in 
Figure 18 and Figure 19.  
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Figure 18: Heatmap bias of the photovoltaic model 

 

 

Figure 19: Heatmap nMAE of the photovoltaic model  

These graphs highlight that the nMAE is weighted up by the first and last hours of the days all 

year round: the nMAE is around 100% at those times. Looking at the corresponding bias, which 

is low, it can be concluded that the nMAE is badly influenced by the hours when production is 

low. Although it is important to achieve a reasonable nMAE, the focus should be set on times 

when production volumes are significant as it when the photovoltaic installation will have a 

major role in the island electricity balance.  
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8 MAIN CONCLUSIONS 

This study describes and analyses a system to forecast the production of renewable sources 
on the island of Borkum in Germany in the frame of the European ISLANDER research project. 
Physical models have been developed and tested to forecast wind and photovoltaic power 
production. Currently, the forecasts have been evaluated on the wind farm and PV park as the 
individual PV pannels are not installed yet. Forecasted data is used as inputs of the global 
production model (see deliverable 4.5 [2]).  

It can be concluded that it is very difficult to reach high model performances if the data 
quantity is low, the data quality is poor, and it is not reliable. Models’ performance achieved 
are equal to 34% and 40% in terms of nMAE for the PV and wind production, respectively.  

It would be relevant to test new approaches such as combined machine learning and physical 
models to reach higher performances and compare the two approaches. 

9 DEVIATIONS 

Delivery of the content is in time and to full satisfaction, without any deviations to actions 
planned. 
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